閥門泄露在生活、生產中十分普遍,輕則會造成浪費,或給生活帶來危險,如自來水閥門泄露,重則導致嚴重后果的發生,如化工行業的有毒、有害、易燃、易爆及腐蝕性介性質的泄漏等,嚴重的威脅人身安全、財產安全和環境污染的事故。
化學工業和原子能工業迅速成長,易燃、易爆、劇毒和帶放射性物資增多,對閥門密封有了更嚴酷要求。
液袋閥門密封性原理
密封就是防止泄漏,那么閥門密封性原理也是從防止泄漏研究的。造成泄漏的因素主要有兩個,一個是影響密封性能的最主要的因素,即密封副之間存在著間隙,另一個則是密封副的兩側之間存在著壓差。閥門密封性原理也是從液體的密封性、氣體的密封性、泄漏通道的密封原理和閥門密封副等四個方面來分析的。
液體的密封性
液體的密封性是通過液體的粘度和表面張力來進行。當液袋閥門泄漏的毛細管充滿氣體的時候,表面張力可能對液體進行排斥,或者將液體引進毛細管內。
這樣就形成了相切角。當相切角小于90°的時候,液體就會被注入毛細管內,這樣就會發生泄漏。發生泄漏的原因在于介質的不同性質。用不同介質做試驗,在條件相同的情況下,會得出不同的結果。
可以用水,用空氣或用煤油等。而當相切角大于90°時,也會發生泄漏。因為與金屬表面上的油脂或蠟質薄膜有關系。
一旦這些表面的薄膜被溶解掉,金屬表面的特性就發生了變化,原來被排斥的液體,就會侵濕表面,發生泄漏。針對上述情況,根據泊松公式,可以在減少毛細管直徑和介質粘度較大的情況下,來實現防止泄漏或減少泄漏量的目的。
氣體的密封性
根據泊松公式,氣體的密封性與氣體分子和氣體的粘性有關。泄漏與毛細管的長度和氣體的粘度成反比,與毛細管的直徑和驅動力成正比。
當毛細管的直徑和氣體分子的平均自由度相同時,氣體分子就會以自由的熱運動流進毛細管。因此,當我們在做閥門密封試驗的時候,介質一定要用水才能起到密封的作用,用空氣即氣體就不能起到密封的作用。
即使我們通過塑性變形方式,將毛細管直徑降到氣體分子以下,也仍然不能阻止氣體的流動。原因在于氣體仍然可以通過金屬壁擴散。所以我們在做氣體試驗時,一定要比液體試驗更加的嚴格。
以上內容就是給大家詳細講解的關于關于液袋閥門密封的知識,相信大家都有進一步的學習和了解了。如果大家還想了解更多資訊,請繼續關注我們吧。